SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH 2016. (Finalised Scheme of Valuation)

Subject: History

Code No: 1025

Qn.No	Scoring Indicators	Split Score	Total Score
1	Ideas related to Indus Civilization	2	
	Beed making shell work Soul makind		
	shell cutting, metal work, Seal making weight making	5	
	Procuring materials contact with distant lands	1	ક
	Mahajanapatas	2	
	Magadhan dominance identified	1/2	
	Adviculture production	1/2	
	Ivon Mines	1/2	
	Ambitions kings	11/2	8
2	Made of metal	14	
7	6th c. conwards	1/2	*·
	Issued by Fings, marchants etc	1/2	2
3	Samudra Gupta/man of Ecol action	•	
	Samudra Gupta/man of Ecocd action Howisena distructor of bad etc.	•	2
4	Endogamy, Exogamy, Poliandry,		
	10113any Carry attempt on the marriage		
	systems of India should be rewarded?	4	4
5	Verring of Jati based on birth		1, ,
	varing based as bown	1	
	Jahi, any number	1.5	
	Jatis shaving common occupation	1	2
6	a) Sanchi b) Amaravathi		
	e) Lumbini 47 Bodh Gaya		4-

Subject:

Qn.No	Scoring Indicators	Split Score	Total Score
7	Slaves openly sold in monket Exchanged as gift Ibn Battuta's description Bernier on Sati Women labour in agricultural and non-agriicultural field	1 1 1	4
8	a) Alwans c) Kannataka * B) Amin Khusnau d) Delhi -* Amy response can be rewarded (b)		4.
a	21yand (Plévimage danghas of five chight' saints) Music & Dance mystical chants	2 1	4
10	First Sinveyor General Sta India ruins at Hampi birst noticed Proported birst survey map of site	1	2.
11,	Seven line of toxts enleased agricultural lands livingational taxcilities well gravited gates	· .	4
12	Zamindans-landed Proprietors Social & Economic previlages collected vevenue on behalf of state congolidated agriculture	1	4
3	Attow - Javolcha Dansab shajahan - Red bort Anvangaseb - Alangir Gulbadan Beguno - Humanyun Nama		1

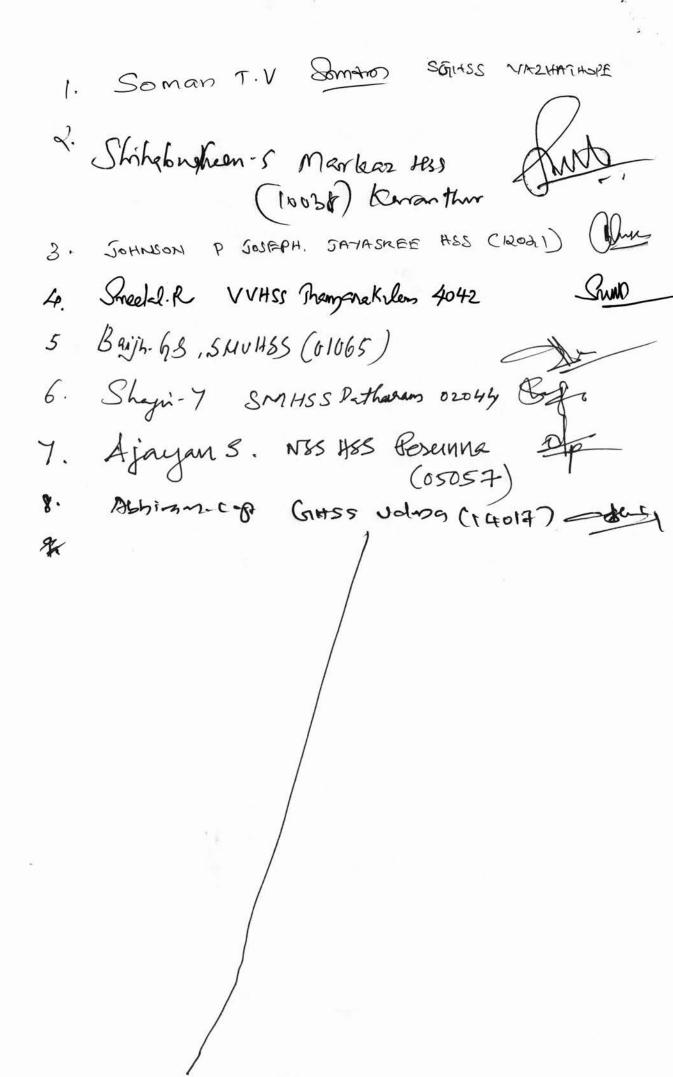
Qn.No	Scoring Indicators	Split Score	Total Score
14	Supa villege infune (Deccas Riot)	1	127
	money lenders of shapkeapers exploitation		
	Rgots brom rural area - looking, burning		
	of-account books	-1. L	T sent
	Spoke ad to other areas	1	4
15	any attempt with regard to the revolt		
	A 1857 should be considered	+	4-
16	Parmanent Settlement 1793		
	filth commission 1813		
	Azaroganh Prodamation. 1857		
	Decean Flot commission. 1878		
	I for one correct answer 2 marks, For two		
	correct answer 3 marks and Three constact		4
	answer 4 marks I		
17	Lahove Session of INC	-	
	Announcement of breaking soll law.	2	
	Dandi Mards	4	
	large scale women Participation	1	
	cenclusion		8
	Jinnah's Theory of two nations	2	
	communal Politics	2	
	Pakistan resolution	1	
	Pailure of cabinet mission		
	Post war incidents	2	8
		-	

		7-1 X # 3-4	

Qn.No	Scoring Indicators	Split Score	Tota Scor
18	Muslim league's stand Ambedkan's view	٦	2
19	Any response on communations shall be	1	
	awandet	2	3
20	ketathunady kozhikodu, cochin, venad autoromous regions controlled by Joint bamilies, maintained militia, sankedams of brahmins etc	+	4
21	BEM		
	Veluthampi Vaikunda Snamikal Chattampi Swamikal	4	4

1. VINOD bUMAR. B. 2. Po Thomas Cf Happusha Suril Thomas 1 dukki 4. Elizabem. M malappinan 5. Nr. Asokam Ak Wangenad 6 Pramod.B Sym Pathanembrita Pro Kollam P. Blagialetshm. THRUSS UR_ 9. Salet Morcis. P gro Thisuvan thapusam. Eroakulan. men _ Mary.K.V. Abadus Gartoon PA - Que Kazhikkede

FIRST YEAR HIGHER SECONDARY EXAMINATION, MARCH 2016 (Scheme of Valuation)


Subject: Computer Science

Code No. 319

Subj	ect : Computer Science	Code No. 31	
Qn.	Searing Indicators	Split	Tota
No.	Scoring Indicators	Score	Score
1	Firewall	1	1
2	Pits and Lands / 0 or 1 / Any relevant answer	1	1
3	Logical Error	1	1
4	int M[3][5] OR float M[3][5]	1	1
5	Fibre To The Home	1	1
6	d. Microwave is used for connectivity	1	1
7	Only one time	1	1
8	Conditional Operators OR (?:)	1	1
9	11001000	1	1
10	Disk defragmenter	1	1
11	Mesh Topology	1	1
12	10100111	2	2
13	Correct statements about top down and bottom up designs		
	OR	1+1	2
	Modular programming (Any two points)		
14	5- integer literal, '5'- character literal, 5.0- floating point literal,		
	"5"- string literal	2	2
15	By inserting single line or multiline comments		
	Use of // or /* and */		
	OR	2	2
	Use of output statement for printing name and address – only 1 score		
16	int A[5];		
	$A[5]={8,7,2,4,6};$		
	OR		
	int A[5]={8,7,2,4,6};		
	OR		
	int A[5];		
	A[0]=8;	2	2
	A[1]=7;		
	A[2]=2;		
	A[3]=4;		
	[[[]]]		
	A[4]=6;		
	A[4]=6;		
	A[4]=6; OR	1	

18 a) pow(5,3) b) strlen("KERALA") c) tolower("M") d) sqrt(100) OR				
OR Correct function names OR Correct function names OR Correct function names OR Draw flowchart in any of the following order e, c, d, f, i, h, a, b, g e, d, c, f, i, h, a, b, g e, d, c, a, f, i, h, b, g OR Partially correct flowchart – only 2 score OR Correct algorithm / flowchart/ program OR OR Partially correct algorithm / flowchart/ program – give 2 score OR Correct definition or declaration of array 1 Correct algorithm / flowchart / program — give 2 score OR Diagram or explanation of searching – only 1 score OR Diagram or explanation of searching – only 1 score OR OR OR OR OR OR OR O	18	b) strlen("KERALA") c) tolower('M')	2	2
Correct function names 19 Draw flowchart in any of the following order e, c, d, f, i, h, a, b, g e, d, c, f, i, h, a, b, g e, d, c, f, i, h, a, b, g e, c, d, a, f, i, h, b, g OR Partially correct flowchart – only 2 score OR Correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program — give 2 score 20 Correct definition or declaration of array Correct algorithm / flowchart / program — give 2 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition 1 OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 23 3 3 3 3 3 3 3 3				
19		22000001 10000001		
e, c, d, f, i, h, a, b, g e, d, c, f, i, h, a, b, g e, d, c, f, i, h, a, b, g e, c, d, a, f, i, h, b, g OR Partially correct flowchart – only 2 score OR Correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program – give 2 score 20 Correct definition or declaration of array Correct algorithm / flowchart / program OR Diagram or explanation of searching – only 1 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ Correct explanation (½ score each) - 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law Correct proof (algebraic method) (B! + A) ¹ = (B) ¹ . A ¹ = B. A ¹	10			
e, d, c, f, i, h, a, b, g e, c, d, a, f, i, h, b, g e, d, c, a, f, i, h, b, g e, d, c, a, f, i, h, b, g e, d, c, a, f, i, h, b, g OR Partially correct flowchart – only 2 score	19	10 and a law 1 man 15		
e, c, d, a, f, i, h, b, g e, d, c, a, f, i, h, b, g OR Partially correct flowchart – only 2 score OR Correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program – give 2 score 20 Correct definition or declaration of array Correct algorithm / flowchart / program OR Diagram or explanation of searching – only 1 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ Correct explanation (½ score each) – 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law Correct proof (algebraic method) (B ¹ + A) = (B ¹) ¹ . A ¹ = B . A ¹		SHE COLUMN TO BY SHE MINISTER		
Second		an entre and the T	3	
OR Partially correct flowchart – only 2 score OR Correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program OR Partially correct algorithm / flowchart/ program – give 2 score 20 Correct definition or declaration of array Correct algorithm / flowchart / program — give 2 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ Correct explanation (½ score each) – 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ^l + A) ^l = (B) ^l . A ^l = B . A ^l				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		The state of the s		
19	OR			
Partially correct algorithm / flowchart/ program – give 2 score 20 Correct definition or declaration of array			3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	(7000)		
Correct algorithm / flowchart / program OR Diagram or explanation of searching – only 1 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ Correct explanation (½ score each) - 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B' + A)' = (B)'. A' = B. A'	20		1	
OR Diagram or explanation of searching – only 1 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – 1½ Correct explanation (½ score each) - 1½ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B¹ + A)¹ = (B)¹ . A¹ = B . A¹	20	CONTRACTOR STATEMENT OF THE CO		
Diagram or explanation of searching – only 1 score 21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – $1\frac{1}{2}$ 3 Correct explanation (½ score each) - $1\frac{1}{2}$ 3 Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition 1 1 3 Valid points for comparison 2 2 23 $a = -4$, $b = 2$ and $c = 1$ 3 OR 3 Error OR No output (1 score); justification (C in upper case) – 2 score 3 24 Transistor – Second generation, VLSI – Fourth generation 2 Single Sing				3
21 Any three services from SMS,MMS,GPS and smart card Names only (½ score each) – $1\frac{1}{2}$ Correct explanation (½ score each) – $1\frac{1}{2}$ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 $a = -4$, $b = 2$ and $c = 1$ OR Error OR No output (1 score); justification (C in upper case) – 2 score 3 Error Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) $(310)_8$ (c) $(C8)_{16}$ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) $(B^l + A)^l = (B^l)^l$. $A^l = B$. A^l				
Names only ($\frac{1}{2}$ score each) – 1 $\frac{1}{2}$ Correct explanation ($\frac{1}{2}$ score each) - 1 $\frac{1}{2}$ OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case)–2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ¹ + A) ¹ = (B ¹) ¹ . A ¹ = B. A ¹	21	A DECEMBER OF A STATE		
Correct explanation (½ score each) - 1½ OR Any three services from GSM, EDGE,GPRS,CDMA - 2 score only 22 Correct definition Valid points for comparison 23 a = -4, b = 2 and c = 1 OR Error OR No output (1 score); justification (C in upper case) - 2 score 24 Transistor - Second generation, VLSI - Fourth generation ENIAC - First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions - 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ¹ + A) ¹ = (B ¹). A ¹ = B. A ¹				
OR Any three services from GSM, EDGE,GPRS,CDMA – 2 score only 22 Correct definition Valid points for comparison 23 $a = -4$, $b = 2$ and $c = 1$ OR Error OR No output (1 score); justification (C in upper case) – 2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) $(310)_8$ (c) $(C8)_{16}$ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) $(B^l + A)^l = (B^l)^l$. $A^l = B$. A^l			3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Any three services from GSM, EDGE, GPRS, CDMA - 2 score only		
Valid points for comparison223 $a = -4$, $b = 2$ and $c = 1$ 3OR3Error OR No output (1 score); justification (C in upper case)-2 score324Transistor - Second generation, VLSI - Fourth generation3ENIAC - First generation325(a)(a) $(310)_8$ (c) $(C8)_{16}$ are same OR3Any two correct conversions - 1 score3OR3Any two correct proof (algebraic method) $(B^I + A)^I = (B^I)^I$. $A^I = B$. A^I 1	22		1	
23	contracts		2	3
OR Error OR No output (1 score); justification (C in upper case)—2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ^I + A) ^I = (B ^I) ^I . A ^I = B . A ^I	23			
Error OR No output (1 score); justification (C in upper case)–2 score 24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ^I + A) ^I = (B ^I) ^I . A ^I = B . A ^I	23			3
24 Transistor – Second generation, VLSI – Fourth generation ENIAC – First generation 25(a) (a) (310) ₈ (c) (C8) ₁₆ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) (B ^I + A) ^I = (B ^I) ^I . A ^I = B . A ^I		92,320	3	
VLSI – Fourth generation33ENIAC – First generation $25(a)$ (a) $(310)_8$ (c) $(C8)_{16}$ are same3OR3Any two correct conversions – 1 scoreORDe Morgan's law25(b)Correct proof (algebraic method)1 $(B^l + A)^l = (B^l)^l$. $A^l = B$. A^l	24			
ENIAC – First generation 25(a) (a) $(310)_8$ (c) $(C8)_{16}$ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) $(B^l + A)^l = (B^l)^l$. $A^l = B$. A^l	2.	The approximation of the control of	3	3
25(a) (a) $(310)_8$ (c) $(C8)_{16}$ are same OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) $(B^l + A)^l = (B^l)^l$. $A^l = B$. A^l				
OR Any two correct conversions – 1 score OR De Morgan's law 25(b) Correct proof (algebraic method) $(B^{I} + A)^{I} = (B^{I})^{I} \cdot A^{I} = B \cdot A^{I}$ 3 3 3 3 3 1 3 3 3 1 3 1 3	25(a)			
OR De Morgan's law $ \begin{array}{ccc} \text{OS} & \text{De Morgan's law} \\ \text{OS} & \text{Correct proof (algebraic method)} \\ \text{OS} & \text{Correct proof (algebraic method)} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & $			3	
OR De Morgan's law $ \begin{array}{ccc} \text{OS} & \text{De Morgan's law} \\ \text{OS} & \text{Correct proof (algebraic method)} \\ \text{OS} & \text{Correct proof (algebraic method)} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & \text{OS} & \text{OS} & \text{OS} \\ \text{OS} & $		Any two correct conversions – 1 score		
25(b) Correct proof (algebraic method) $ (B^{l} + A)^{l} = (B^{l})^{l} \cdot A^{l} = B \cdot A^{l} $	OR			
$(B^{I} + A)^{I} = (B^{I})^{I} \cdot A^{I} = B \cdot A^{I}$	178425-4-53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	3
			2	

26	(a) Recursive function	1	
	(b) Correct function definition		
-	int sum(int n)		
	{	3	
	if (n==0) return 0;		4
	else return (n+sum(n-1));		-
34	OR		
	Any logic for finding the sum of the first N natural numbers – 2 score only		
27	Detailed description about primary and secondary memory devices in computer (any five)	5	5
	Classification only -1 score Only the names of any five devices $-\frac{1}{2}$ score each	3	3
28(a)	Correct C++ program		
2 5	Correct Program structure – 1; Variable declarations – 1; Input – ½;	5	
	Loop – 1; Logic – 1½		_
OR	Correct C++ program		5
28(b)	Correct Program structure – 1; Variable declarations – 1; Input – ½; Loop – 1; Logic – 1½	5	

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH 2016 (Scheme of Valuation)

Subject : Computer Science Code No. 1019

plit core 2+1/2 2+1/2 1	Score 3
1	
1	3
1	3
1	
	254
2	1
2	2
7	
+ 1/8	- 9
1	
1/2	
32	
	3
1	1
1	
1/2	2
10000) 175
1	
1	2
1	2
1	1
1	1
,	
	2
0.00	
2	
	1/2 1 1/2 1 1/2 1/2

10	Use of <h1> (or any other heading tag), <marquee>, ,</marquee></h1>	1	
	 and structural tags (<html>, <head>, <title>, <BODY>)</td><td>1</td><td>3</td></tr><tr><td></td><td>(Any three from the above 5 sets of tags can be given full score)</td><td>1</td><td></td></tr><tr><td>11</td><td>gives the definition of the term / Data Definition / Data Description</td><td>1</td><td>1</td></tr><tr><td>12</td><td><TABLE> tag and 6 sets of <TR> tag</td><td>1+1</td><td></td></tr><tr><td></td><td>3 sets of <TH> tags in the first <TR> pair</td><td>1</td><td></td></tr><tr><td></td><td>3 sets of <TD> tags in each of the remaining <TR> pairs</td><td>1</td><td></td></tr><tr><td></td><td>Data setting within <TH> pairs and <TD> pairs</td><td>1</td><td></td></tr><tr><td></td><td>(If these tags are not used properly, and only structural tags are</td><td></td><td></td></tr><tr><td></td><td>written, give 1 score.)</td><td></td><td>5</td></tr><tr><td></td><td>(If SQL statement is written for this question, the following</td><td></td><td></td></tr><tr><td></td><td>distribution may be used:</td><td></td><td></td></tr><tr><td></td><td>Command – 1 score; Column descriptions – 3 score for 3 columns;</td><td></td><td></td></tr><tr><td></td><td>Proper syntax – 1 score)</td><td></td><td></td></tr><tr><td></td><td>(If a table is drawn with the details of five fruits, give 2 scores)</td><td></td><td></td></tr><tr><td>OR</td><td> tag and Type attribute</td><td>1+1)</td><td></td></tr><tr><td></td><td>5 sets of tags and Data setting</td><td>1 + 1/5</td><td>-</td></tr><tr><td></td><td>Structural tags</td><td>1 5</td><td>9</td></tr><tr><td></td><td>(If a roman numbered list of five fruits is prepared, give 2 scores)</td><td>-</td><td></td></tr><tr><td>13</td><td>Correct / Incorrect</td><td>1</td><td></td></tr><tr><td></td><td>(In the context of JavaScript it is incorrect and in other cases, it is</td><td>755</td><td>1</td></tr><tr><td></td><td>correct)</td><td></td><td></td></tr><tr><td>14</td><td>Proper example/syntax in C++/JavaScript/PHP</td><td>2</td><td>_</td></tr><tr><td></td><td>Use / Explanation / Output</td><td>1</td><td>3</td></tr><tr><td>15</td><td>The keyword function and function name</td><td>1</td><td></td></tr><tr><td></td><td>Body to find the product of any two numbers (or variables)</td><td>1</td><td>•</td></tr><tr><td></td><td>(Give full score if an HTML Form is designed to accept two numbers</td><td></td><td>2</td></tr><tr><td></td><td>and display their product.)</td><td></td><td></td></tr><tr><td>16</td><td>SSH / SFTP (or Secured File Transfer Protocol)</td><td>1</td><td>1</td></tr><tr><td>17</td><td>Dedicated hosting.</td><td>1</td><td></td></tr><tr><td></td><td>Servers are usually hosted in data centers where the service provider</td><td>1</td><td></td></tr><tr><td></td><td>facilitates Internet connectivity, round-the-clock power supply, the</td><td></td><td></td></tr><tr><td></td><td>technical expertise for managing web servers, etc.</td><td></td><td>2</td></tr><tr><td></td><td>(Explanation of dedicated hosting can also be considered for 1 score</td><td></td><td></td></tr><tr><td></td><td>instead of writing advantage.)</td><td></td><td></td></tr><tr><td>18</td><td>Physical (Internal), Logical (Conceptual), and View (External)</td><td>1½</td><td>_</td></tr><tr><td></td><td>Explanation of each in a sentence.</td><td>11/2</td><td>3</td></tr><tr><td>19(a)</td><td>Primary key - Acc Number, Candidate keys - Name and Balance</td><td></td><td></td></tr><tr><td></td><td>(Any one of the above columns may be considered as the primary key</td><td>1/2+1/2</td><td></td></tr><tr><td></td><td>and other two as candidate keys)</td><td></td><td>2</td></tr><tr><td>19(b)</td><td><math>\sigma_{\text{Balance} > 200000}(\text{ACCOUNT}).</math></td><td>1/ +1/</td><td></td></tr><tr><td></td><td>OR SELECT * FROM Account WHERE Balance>200000;</td><td>1/2+1/2</td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table></title></head></html>		

	OR Output from the table (i.e.; the last row)		
20	(Command - ½ score, Required clause - ½ score for each query)		
	(Syntax or Example can be considered)		
	(a) ALTER TABLE <table_name></table_name>	1/2	
	RENAME TO <new_table_name>;</new_table_name>	1/2	
	(b) DELETE FROM	1	
	[WHERE <condition>]; (This clause is Not essential)</condition>		
	(c) ALTER TABLE	1/2	5
	MODIFY <column_name> <data_type> [<size>] [<constriant>];</constriant></size></data_type></column_name>	1165	
	(d) ALTER TABLE <table_name></table_name>	1/2	
	DROP <column name="">;</column>	1/2	
	(e) ALTER TABLE	1/2	
	ADD <column name=""> <data type=""> [<size>] [<constriant>];</constriant></size></data></column>	1/2	
21	Give 1 score for any relevant response	1	1
22	(a) freeware	1	1
23(a)	Any two comparison points from the following:	1	•
	Indexed array: (i) Numeric index (ii) Non-negative numbers are used		
	as index or subscripts (iii) Eg.: \$price=array(25, 40, 50, 30);	1/2	
	Associative array: (i) Named keys as index (ii) Strings are used as	1/2	2
	keys /index (iii) Eg.: \$price=array("pen"=> "25", "book"=> "40",	1/2	
	"box"=> "50", "cover"=> "30");	1/2	
	(If examples are correct, full score can be given)		
23(b)	(Code may be using C++/JavaScript/PHP)		
	Outer loop for generating numbers below 50	1	
	Inner loop for generating numbers up to the half (or square root) of the	,	3
	above number	1	
	Factor checking and display of prime number	1	
OR	Outer loop for generating numbers below 100	17	
-	Inner loop for generating numbers up to the half of the above number	1(2	
	Factor checking and summing the factors	1/2 / 5	9
	Perfect number checking	1/2	
	Full score may be given if the programs are written for only prime		
	number checking and perfect number checking (i.e. without outer		
	loop)		
	OR		
	php ? -1 score		
	Loop - 1 score		
24(2)	Remaining logic - 1 score	Na.	
24(a)	Parallel computing / Distributed computing	1	1
24(b)	SaaS, Paas, IaaS	1+1+1	627
	(Explanation of any two can be given full score)		3
	(Explanation about cloud services can be given 1 score)		

25(a)	Credit card / Debit card / ATM Machine / Swipe machine / eChequeue	1	1
	Explanation about industrial property right and copyright.	1+1	7/2
	One example for each	1/2+1/2	3

1. Joy John, St. Joseph's HSS, Thiruvananthapuram.

2. Lakshimija P. S., AKM HSS, Mylapore, Kollam.

Firosh Khan S. S., Govt. HSS, Konni, Pathanamthitta.

Sajan Mathew, SJ HSS, karimannoor, Idukki.

5. Krishnakumar N., NS HSS, Nedumudi, Alappuzha.

6. Binoj Chaceko, JJMM HSS, Yendayar, Kottayarn.

7. Resmi Gopinath, NSS BHSS, Manikyamangalam, Ernakulam.

8. Subhash A. Panikulam, St. Antony's HSS, Mala, Thrissur.

9. Sreeja R. Nair, IKT HSS, Cherukúlamba, Malappuram.

10. Shinil P. P., Palaora HSS, Ulliyeri, Kozhikode.

11. Jithesh A., Vijaya HSS, Pulppalli, Wayanad.

12. , Kasaragode.

13 TEDDY JOJEPH KANNUR 14. Abdul Vojid K.K. Kasaragod

\$1201k

FIRST YEAR HIGHER SECONDARY EXAMINATION MARCH 2016 FINALIZED SCHEME OF VALUATION

Subject - Biology - Part A Botany

Code No. 317

Qn.No	SUB QTN	Scoring Indicators	Split Score	Total Score
1		a) Pasteur	1	
2		d) Chlorophyll a	1	(A)
3		 The members of Rhodophyceae are known as red algae. Presence of red pigment r-phycoerythrin, Chlorophyll a and d. The food is stored as floridean starch. Cel wall is made up of cellulose, pectin, poly sulphate esters. Present in fresh water, brackish water, salt water. Red thalli of most of the red algae are multicellular. Vegetatively reproduced by fragmentation. Asexually reproduced by non-motile spores. Sexually reproduced by non-motile gametes . Sexual reproduction is oogamous with post-fertilization developments. (Any two distinguishing features of Rhodophyceae give 2 scores) 	1+1	
		OR	OR	OR
		 Mycorrhiza is the symbiotic association of a fungus with root system / Fungal association in the roots of Pinus. Corolloid roots are the specialised roots of Cycas / Roots associated with nitrogen fixing cyanobacteria. 	1	G
4		Active transport:- Transport of substances from low concentration to a higher concentration (uphill transport). Requires ATP to carry substances across the cell membrane. (Any one response of the above give 1 score) Facilitated diffusion:- Transport of substances from higher concentration to lower concentration. Substances move across the cell membrane without the expenditure of energy. (Any one response of the above give 1 score)	1	2
5		 Chlorosis / loss of chlorophyll and yellowing in leaves. Necrosis / death of tissues. Stunted plant growth. Premature fall of leaves and buds. Inhibition of cell division. Delay in flowering etc. (Any four deficiency symptoms give 2 scores) 	1/2 x 4= 2	

6		 Respiration is an amphibolic pathway as it involves both anabolism (synthesis of substrates) and catabolism (breaking down of substrates). (Any explanation showing respiration is an amphibolic pathway give full score 2) or (Any Schematic representation showing respiration is an amphibollic pathway give full score 2). 	1+1	2
7		Alcoholic fermentation:- Pyruvic acid is converted to carbondioxide and ethanol. Lactic acid fermentation:- Pyruvic acid is converted to lactic acid. (Schematic representation of reaction steps of alcoholic and lactic acid fermentation give full score 2 /any one difference between alcoholic and lactic acid fermentation give full score 2)	1	2
8	а	i) ABA or NAA (Synthetic hormone)	1	3
	b	 Promote bolting in rosette plants(internode elongation just prior to flowering. Increase the length of grapes stalk/increase in length axis. Delay of senescence. Speed up malting process in brewing industry. (Any two correct physiological functions of gibberellin give 2 scores). 	1+1	
9	а	Kranz anatomy	1	3
	b	 Tolerate higher temperature. Show responses to high light intensities. Lack of photorespiration. Greater productivity of biomass. At very low Co2 concentration C4 plants reach saturation level. In C4 plants Co2 fixation takes place both in mesophyll cells and bundle sheath cells. (Any two advantages of C4 plants give 2 scores Or Explanation about C4 pathway give 2 scores Or Schematic representation of C4 photosynthetic pathway give 1 score) 	1+1	
10	а	iii) Pachytene	1	3
	b	 Conservation of specific chromosome number of each species. Increases genetic variability in the population of organisms from one generation to the next. Formation of haploid gametes. Reduction of chromosomes by half. (Any two significances of meiosis give 2 scores) 	1+1	*
		Liliaceae / Lily family	1	3

	OR	OR	OR
	(Any three events or its explanation during periderm formation give 3 scores or		
	parenchymatous cells on outer side with lens shaped opening called lenticels.		
	At certain region ,the phellogen cut off closely arranged	9.5	
	remaining layers peripheral to it and finally become die and slough off.		
	 Phellogen, phellum and phelloderm are collectively known as periderm. Due to the activity of cork cambium, pressure build up on the 		
	phellogen and and another or collectively because and another or		
	The inner cells differentiated into parenchymatous sec.cortex or	- N	
	The outer cells differentiate into suberised cork or phellem.		
	Phellogen cut off cells on both sides.		
13	 Meristematic tissue cork cambium or phellogen develops in the cortex. 	1x3	
	or singer and recoison moder of Fluid model give 2 scores		
) Or Singer and Nicolson model or Fluid mosaic model give 2 scores	200	TR.
	(Any three correct structural features of plasma membrane give 3 scores	-	
	 The quasi-fluid nature of lipid enables lateral movement of proteins within the overall bilayer. 	******	
	proteins are partially or totally buried in the membrane • The guasi-fluid nature of lipid enables lateral movement of proteins		
	Peripheral proteins lie on the surface of membrane while the integral	-35-1	
	Membrane proteins can be integral or peripheral.		
	 Cell membrane also possess proteins and carbohydrates. 	- 2	
	phosphoglycerides.	10-88	
	Lipid component of the membrane mainly consist of		
	Hydrophobic tails towards the inner part.		
-	 Lipids are arranged within the membrane with polar head towards the outer sides . 		
	Cell membrane is composed of lipids that are arranged in a bilayer.		
12	Fluid mosaic model of plasma membrane.	1 x 3 = 3	
	features give full score 2)		
	(Any four floral features or floral formula of liliaceae with four floral		
	• Axile placentation etc		
	Tricarpellary, trilocular, syncarpous, superior ovary/ G (3)		
	 Six tepals in fused condition with valate aestivation./(3+3) Six stamens in epipetalous condition/(3+3) 		
	Actinomorphic Six tapple in fused condition with valety postivation //2+2)		
	b Bisexual	1/2 x 4 =2	

	TOTAL SCORE	30	30
	labelling give full score 3)		
	Or Diagrammatic representation of the activity of cambial ring with correct 3	-	
	(Any three events about the cambial ring activity give full score 3)		
	sec.xylem and sec.phloem in radial direction and form secondary medullary rays.		
real contract	Cambium forms narrow bands of parenchyma which passes through the		
	The primary xylem remains more or less intact.		
	. Heart wood, sap wood formation.		
	. Formation of annual rings	3,-2	
	outerside and form more secondary xylem than sec.phloem.		
	The cambium is greatly more active on the innerside than the		£
	The cells cut off towards periphery and form sec.phloem.		
	The cells cut off towards innerside and form sec.xylem.		
	 The cambial ring become active and begins to cut off new cells both towards the inner and outersides. 	(1x3)	(3

Maria Jose Hall for Mary 1335a4.

SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2016

FINALIZED SCHEME OF VALUATION

Subject - Biology - Part A Botany

Code No. 1017

Qn.No	SUB QTN	SUB	Scoring Indicators	Split Score	Total Score
1			c) Parthenogenesis	1	1
2	-		d) Perisperm	1	1
3	а		Cycles of gaseous matter are called gaseous cycle. The reservoir of gaseous type of nutrient cycle exists in the atmosphere. These cycles occur at faster rate. (Any one relevant point or example or schematic representation about gaceous cycle give 1 score)	1	
	b		Cycles of mineral matter are called sedimentary cycle. These cycles are slow. The reservoir for mineral matter is located in earth's crust. (Any one relevant point or example or schematic representation about sedementary cycle give 1 score)	1	
4			b) Biomagnification	1	1
5			 Eli lily prepared two DNA sequences corresponding to A and B, chains of human insulin by using r DNA techniques. Introduced them in plasmids of E.coli to produce insulin chains. Chains A and B were produced separately. These separately prepared chains were extracted and combined by creating disulfide bonds to form human insulin. (Any two points from above or summerised exaplanation about it or diagrammatic representation of preparation of human insulin by rDNA technology give 2 score) 	1+1	
6	a		 Screening germ plasm for resistance sources. Hybridisation of selected parents. Selection and evaluation of hybrids. Testing and release of new varieties. Or any four steps of plant breeding give 2 scores. Pusa Sadabahar, Parbhani kranti, Chilly and Mung bean. (any two example for virus resistant plants give1score) 	1/2 1/2 1/2 1/2 1/2	3
			OR	OR	OR

b	Plants obtained by tissue culture are genetically identical are known as somaclones.	1	(3
	 Isolation of somatic cells from two different varieties of 	1/2	
	plants. • Digestion of cell walls by enzymes.	1/2	
	 Fusion of protoplasts of two selected varieties forming somatic hybrid protoplast. 	1/2	
	 Somatic hybrid protoplast is then grown in suitable culture medium and produce desired somatic hybrid or the diagrammatic representation of somatic hybridisation give 2 scores 	1/2	
7	Fruit is developed from (thalamus) parts of the flower other than ovary. Such fruits are called false fruits.	1	2
	Eg:-Apple,Strawberry,Cashew (any one relevant example give 1 score)	1	
8	Pollen release and stigma receptivity are not synchronised.	1	2
	 Anther and stigma are placed at different positions. Self- incompatibility. Unisexual flowers on monoecious 	1	
	. Dioecious plants (any two out breeding devices give 2 scores)	12	
9	Deciduous forest	1/2	1
	Tropical rain forest Forest	1/2	
	• Desert		
	Sea coast (Any two these give 1 score)		
10	Pyramid of biomass in sea / lake is generally inverted because the biomass of fishes (top carnivores) far exceeds that of	2	2
	phytoplankton (primary producers) or diagrammatic		
	representation of inverted pyramid of biomass with correct labelling give 2 scores		

11	а	1.Mutualism/symbiosis	1/2	3
€		The interaction between two organisms both are mutually	4.10	- T
		benefited or Species A + Species B + or Explanation with	1/2	
		example 2.Commensalism:-	1/2	-
	- 1			
		The interaction between two organisms , one is benefited and		4 10
		other is neither benefited nor harmed or Species A + Species		
- 1		B 0	1/2	
		or Explanation with example.		
		3.Parasitism :-	1/2	
		The interaction between host and parasite, in this parasite is		
		benefited and host is harmed or + - or Explanation with		
		example		
		4.Predation + Explanation with example		
		5.Competition Explanation with example		
		6.Ammensalism - 0 Explanation with example		
	-	(Name of any three of the above interactions with example		-
		give 3 scores)	- 1	2/6
		OR	OR	OR
	b	Temperature	1/2 x 6=3	3
		Water		
		Light		
- 1		Soil		
		(Any three above mentioned environmental factors wth		100
		explanation in single sentence give full score 3)		
12		Compressed natural gas.	1	2
			1/2	
- 1		• CNG burns most efficiently and very little unburnt gas is left.	1/2	
		It is cheaper than diesel and petrol.	-/-	
		It can not be adulterated like petrol or diesel.		
		. It cannot be siphoned off		
		. Eco friendly (any two of the above responses give 1 score)		
		, (, , , , , , , , , , , , , , , , , ,		
13		The use of bio-resources by multinational companies and other	2	2
		organizations without proper authorisation from the countries		-
		and the people concerned without compensatory payment.		
		(Any relevant explanation of biopiracy give 2 scores)		re di
		(any vereful explanation of propriately give 2 scores)		
14		Cutting down use of fossil fuel.	1/2	1
		Improving efficiency of energy usage.	1/2	- 1
		Reducing deforestation.	AR 102	
		Planting trees.		
		Slowing down the growth of human population.		
		Reduce the emission of greenhouse gases into the		
		atmosphere etc (any two correct responses give 1 score)		
		(and the desired temporales give 1 score)		

17		d) Pistillate	1	1
	b	DNA polymerase is the enzyme which catalyses the polymerisation of deoxyribonucleotides into new DNA strand or extension of primer in PCR or DNA polymerase a commonly used tool in rDNA technology. (Any one function give 1 score	1	
16	а	Bacteria, E.coli, Agrobacterium tumifaciens, Retrovirus, Plasmid, Ti plasmid, p BR322, Bacteriophage, Yeast (any one organism or components used as vector give 1 score)	1	2
15		A Motor B Foam braker C Flat bladed impeller D Acid / Base for pH control Or any two labelling or brief account on bioreactor give full score 2	1/2 1/2 1/2 1/2	

Joby George E Joby Botany HEST Botany AKM HES Poochely.